

 Project No.:
 TM-2207000439P

 Report No.:
 TMXD2207003482DE

Page: 1 / 71 Rev.: 00

CE EMC TEST REPORT

for

UP Squared V2 Main Board; UP Squared V2 Edge System MODEL: xUPSxEHLx; xUPSxEDGExEHLx (x - Where x may be any combination of alphanumeric characters or "-"or blank.)

Issued to:

AAEON Technology Inc.

5F, No.135, Lane 235, Pao Chiao Rd, Hsin-Tien Dist., New Taipei City, Taiwan, R.O.C.

Issued by:

Compliance Certification Services Inc. Xindian Lab. No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, Taiwan. TEL: 886-2-22170894 FAX: 886-2-22171029

Issued Date: August 18, 2022

Note: This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Document is at http://www.sgs.com.tw/Terms-and-Conditions and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Compliance Certification Services Inc. 程智科技股份有限公司 No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, Taiwan /新北市新店區中生路 163-1 號 t: (886-2) 2217-0894 f: (886-2) 2217-1029 www.sgs.com.tw www.ccsrf.com

Page: 2 / 71 Rev.: 00

Revision History

Rev.	lssue Date	Revisions	Effect Page	Revised By
00	August 18, 2022	Initial Issue	ALL	Amy Wang

Page: 3 / 71 Rev.: 00

TABLE OF CONTENTS

1		TEST CERTIFICATION	. 4
2		TEST RESULT SUMMARY	. 5
3		EUT DESCRIPTION	
4		TEST METHODOLOGY	. 7
	4.1.	DECISION OF FINAL TEST MODE	7
	4.2.	EUT SYSTEM OPERATION	
5		SETUP OF EQUIPMENT UNDER TEST	. 8
		DESCRIPTION OF SUPPORT UNITS	
	5.2.	CONFIGURATION OF SYSTEM UNDER TEST	9
6		FACILITIES AND ACCREDITATIONS	10
		FACILITIES	
	6.2.	ACCREDITATIONS	10
	6.3.	MEASUREMENT UNCERTAINTY	10
7		EMISSION TEST	
	7.1.	CONDUCTED EMISSION MEASUREMENT AT AC MAINS PORT	11
		RADIATED EMISSION MEASUREMENT	
		HARMONICS CURRENT MEASUREMENT	
	7.4.	VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	
8		IMMUNITY TEST	
		GENERAL DESCRIPTION	
		GENERAL PERFORMANCE CRITERIA DESCRIPTION	
		ELECTROSTATIC DISCHARGE (ESD)	
		RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	
		ELECTRICAL FAST TRANSIENT (EFT)	
		CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	
			-
~	8.9.	VOLTAGE DIP & VOLTAGE INTERRUPTIONS	
9		PHOTOGRAPHS OF THE TEST CONFIGURATION	
Α	PPE	NDIX 1 - PHOTOGRAPHS OF EUT	65

1 TEST CERTIFICATION

Product: UP Squared V2 Main Board; UP Squared V2 Edge System Model: xUPSxEHLx; xUPSxEDGExEHLx (x - Where x may be any combination of alphanumeric characters or "-"or blank.) Brand: AAEON Applicant: AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd, Hsin-Tien Dist., New Taipei City, Taiwan, R.O.C. Manufacturer: AAEON Technology Inc. 5F, No.135, Lane 235, Pao Chiao Rd, Hsin-Tien Dist., New Taipei City, Taiwan, R.O.C. Tested: August 9, 2022 Applicable EN 55011: 2016 + A11: 2020 (Group 1, Class A) EN IEC 61000-6-1: 2019 Standards: BS EN 55011: 2016 + A11: 2020 BS EN IEC 61000-6-1: 2019 EN IEC 61000-3-2: 2019 IEC 61000-4-2: 2008 BS EN IEC 61000-3-2: 2019 IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010 EN 61000-3-3: 2013 + A1: 2019 IEC 61000-4-4: 2012 BS EN 61000-3-3: 2013 + A1: 2019 IEC 61000-4-5: 2014 + A1: 2017 IEC 61000-4-6: 2013 + COR1: 2015 IEC 61000-4-8: 2009 IEC 61000-4-11: 2004 + A1: 2017

Note

This test report can be used for CE and UKCA marking application which is based on equivalent requirements between UK and EU. It is appropriate using designated standards to provide presumption of conformity with GB law.

Statements of Conformity

Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Jason Lee Section Manager

Reviewed by:

Eva Fan Supervisor of report document dept.

2 TEST RESULT SUMMARY

EMISSION						
Standard	Item	Result	Remarks			
EN 55011: 2016 + A11: 2020 (Group 1, Class A)	Conducted	PASS	Meet Class A limit			
BS EN 55011: 2016 + A11: 2020	Radiated	PASS	Meet Class A limit			
EN IEC 61000-3-2: 2019 BS EN IEC 61000-3-2: 2019	Harmonic current emissions	PASS	Meet Class A limit			
EN 61000-3-3: 2013 + A1: 2019 BS EN 61000-3-3: 2013 + A1: 2019	Voltage fluctuations & flicker	PASS	Meets the requirements			

IMMUNITY 【 EN IEC 61000-6-1: 2019 / BS EN IEC 61000-6-1: 2019 】						
Standard	ltem	Result	Remarks			
IEC 61000-4-2: 2008	ESD	PASS	Meets the requirements of Performance Criterion B			
IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010	RS	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-4: 2012	EFT	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-5: 2014 + A1: 2017	Surge	PASS	Meets the requirements of Performance Criterion B			
IEC 61000-4-6: 2013 + COR1: 2015	CS	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-8: 2009	PFMF	PASS	Meets the requirements of Performance Criterion A			
IEC 61000-4-11: 2004 + A1: 2017	Voltage dips & voltage variations	PASS	Meets the requirements of Voltage Dips: 1) 0% residual Performance Criterion A 2) 70% residual Performance Criterion A Voltage Interruptions: 1) 0% residual Performance Criterion C			

3 EUT DESCRIPTION

Product	UP Squared V2 Main Board; UP Squared V2 Edge System				
Brand Name	AAEON				
Model	xUPSxEHLx; xUPSxEDGExEHLx (x - Where x may be any combination of alphanumeric characters or "-"or blank.)				
Applicant	AAEON Technology Inc.				
Housing material	UP Squared V2 Main Board: N/A UP Squared V2 Edge System: Metal case				
Received Date	July 26, 2022				
EUT Power Rating	12VDC from Adaptor				
AC Power During Test	230VAC / 50Hz to Adaptor				
AC Adaptor Manufacturer	Powertron Electronic Corp.				
AC Adaptor Model Number	PS1065-120IB500				
AC Adaptor Power Rating	I/P: 100-240VAC~50-60Hz, 1.8A O/P: 12VDC, 5.0A 60W				
DC Power Cable Type	Unshielded, 1.1m (Non-detachable, with two cores)				

Model Differences

Model	Difference	Tested (Checked)		
UPS-EHL01	UPS-EHL01 UP Squared V2 Main Board			
UPS-EDGE-EHL01	\square			
xUPSxEHLx; xUPSxEDGExEHLx	 x - Where x may be any combination of alphanumeric characters or "-"or blank. For marketing purpose only. 			

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH
1. HDMI Port	1	1
2. Earphone Port	1	1
3. Microphone Port	1	1
4. USB 3.0 Port	3	3
5. DP Port	1	1
6. LAN Port	2	2
7. SIO Port	1	1

Note: Client consigns only one model sample to test (Model Number: UPS-EHL01; UPS-EDGE-EHL01).

4 TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the below additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration mode is as the following:

Conduction Mode:

1 DP+HDMI 1920*1200 60Hz

Radiation Mode:

```
1 DP+HDMI 1920*1200 60Hz
DP+HDMI 1920*1200 60Hz / 1-6GHz
```

Worst: Conduction: Mode 1 Radiation: Mode 1

4.2. EUT SYSTEM OPERATION

- 1. Windows 10 boots system.
- 2. Run Burnintest 9.0.exe to activate all peripherals for test EUT.
- 3. Run LanTest20.exe setup max test to Lan port (EUT IP 192.168.1.10/192.168.1.20, Server PC IP 192.168.122/192.168.1.23).

Note: Test program is self-repeating throughout the test.

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

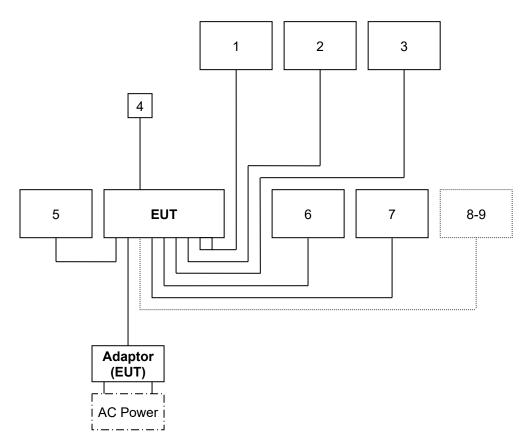
EUT Devices:

No.	Equipment	Equipment Model No.	
1	CPU (2.0GHz)	J6426	Intel
2	Memory (16GB)	MT53E2G32D4DT-046 WT:A	Micron
3	Power Adapter	PS1065-120IB500	Powertron Electronic Corp.
4	Storage (128GB)	SDINBDA4-128G-V	Sandisk

Peripherals Devices:

No.	Equipment	Model No.	Serial No.	FCC ID / BSMI ID	Brand Name	Data Cable	Power Cord
1	Earphone & Microphone	X710	N/A	N/A	HAWK	Unshielded, 1.8m	N/A
2	USB Mouse	M-U0026	N/A	BSMI: T41126	LOGITECH	Shielded, 1.5m	N/A
3	USB Keyboard	Y-U0009	N/A	BSMI: D51160	LOGITECH	Shielded, 1.5m	N/A
4	USB HDD	TS1TSJ25M3G	G19229-0801	BSMI: D33193	Transcend	Shielded, 0.5m	N/A
5	Monitor	PA248Q	N/A	BSMI: R31018	ASUS	HDMI: Shielded, 2.0m	Unshielded, 1.8m
6	Monitor	PA248Q	N/A	BSMI: R31018	ASUS	DP: Shielded, 2.0m	Unshielded, 1.8m
7	Modem	AL-56ERM	0MERM04A0201	N/A	GALILEO	Shielded, 1.5m	Unshielded, 1.8m
8-9	Server PC	Precision 3640 Tower	N/A	BSMI: R33002	DELL	Unshielded, 20m	Unshielded, 1.8m

Note:


1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 9 / 71 Rev.: 00

5.2. CONFIGURATION OF SYSTEM UNDER TEST

Page: 10 / 71 Rev.: 00

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCSrf Taiwan Xindian Lab. at No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, Taiwan.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada		
Japan	VCCI		
Taiwan	BSMI		
USA	FCC		

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	0.15MHz ~ 30MHz	± 2.8
Radiated emissions	30MHz ~ 1000MHz	± 5.1
Radiated emissions	1000MHz ~ 6000MHz	± 4.6

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2005, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.8dB(AMN); 5.2dB(OATS) and 5.5dB(1-6GHz) respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

Page: 11 / 71 Rev.: 00

Report No.: TMXD2207003482DE

7 EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT AT AC MAINS PORT

7.1.1. LIMITS

CLASS A

FREQUENCY	Group 1 ≤ 20kV		Group 1 > 20kV / Group 2 ≤ 20kV		Group 2 > 20kV	
(MHz)	Quasi-peak (dBuV)	Average (dBuV)	Quasi-peak (dBuV)	Average (dBuV)	Quasi-peak (dBuV)	Average (dBuV)
0.15 - 0.5	79	66	100	90	130	120
0.50 - 5.0	73	60	86	76	125	115
	0 73	60	90	80		
5.0 - 30.0			Decreasing li logarithm of fi		115	105
			73	60		

Note: The lower limit shall apply at the transition frequencies. Care should be taken to comply with leakage current requirements.

CLASS B

FREQUENCY	Group 1 & 2			
(MHz)	Quasi-peak (dBuV)	Average (dBuV)		
0.15 - 0.5	66 Decreasing linearly with logarithm of frequency to 56	56 Decreasing linearly with logarithm of frequency to 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: The lower limit shall apply at the transition frequencies. Care should be taken to comply with leakage current requirements.

7.1.2. TEST INSTRUMENTS

Conducted Emission room # B							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Attenuator	MCL	HAT-10	SD-C012	03/21/2023			
BNC Cable	EMEC	CFD300-NL	SD-C020	01/03/2023			
EMI Test Receiver	R&S	ESR3	102166	03/27/2023			
LISN	Schwarzbeck	NSLK 8127	8127382	04/05/2023			
LISN(EUT)	Schwarzbeck	NSLK 8127	8127526	04/05/2023			
Thermo-Hygro Meter	Wisewind	N/A	SD-S017	09/01/2022			
Test S/W	EZ-EMC						

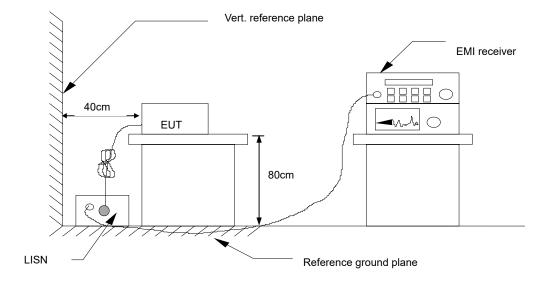
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

7.1.3. TEST PROCEDURES

Procedure of Preliminary Test

- The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 / BS EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per EN 55011 / BS EN 55011.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.


Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

Page: 13 / 71 Rev.: 00

7.1.4. TEST SETUP

• For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

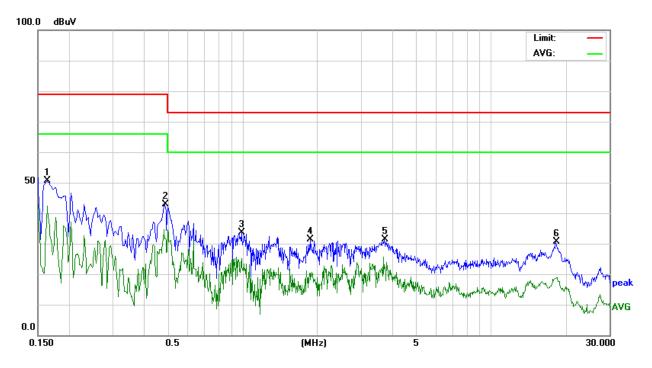
Freq.	Reading	Factor	Result	Limit	Margin	Detector	Line
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
X.XX	42.95	0.55	43.50	73	-29.50	Q	

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading

Factor = Insertion loss of LISN + Cable Loss + Pulse Limit

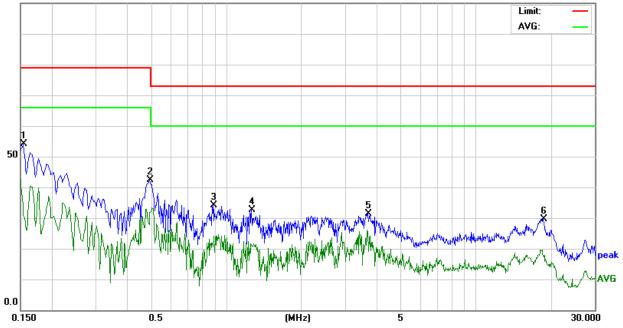
- Result = Read Level + Factor
- Limit = Limit stated in standard
- Margin = Reading in reference to limit
- P = Peak Reading
- Q = Quasi-peak Reading
- A = Average Reading
- L1 = Hot side
- L2 = Neutral side


Calculation Formula

Margin (dB) = Result (dBuV) – Limit (dBuV)

7.1.6. TEST RESULTS

Model No.	UPS-EHL01; UPS-EDGE-EHL01	6dB Bandwidth	9 kHz
Environmental Conditions	22.5°C, 64% RH	Test Mode	Mode 1
Tested by	Jack Chen	Phase	L1
Standard	EN 55011 GROUP 1 CLASS A		


	Conducted Emission Readings							
Frequ	uency Rang	je Investig	gated		150 kHz to	30 MHz		
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)	
0.1635	40.60	10.08	50.68	79.00	-28.32	Р	L1	
0.4875	32.76	10.12	42.88	79.00	-36.12	Р	L1	
0.9915	23.51	10.20	33.71	73.00	-39.29	Р	L1	
1.8690	21.14	10.28	31.42	73.00	-41.58	Р	L1	
3.7320	20.97	10.36	31.33	73.00	-41.67	Р	L1	
18.2400	19.91	10.70	30.61	73.00	-42.39	Р	L1	

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Model No.	UPS-EHL01; UPS-EDGE-EHL01	6dB Bandwidth	9 kHz
Environmental Conditions	22.5°C, 64% RH	Test Mode	Mode 1
Tested by	Jack Chen	Phase	L2
Standard	EN 55011 GROUP 1 CLASS A		

100.0 dBuV

Conducted Emission Readings							
Frequency Range Investigated				150 kHz to	30 MHz		
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)
0.1545	43.93	10.09	54.02	79.00	-24.98	Р	L2
0.4965	32.29	10.13	42.42	79.00	-36.58	Р	L2
0.8880	23.86	10.18	34.04	73.00	-38.96	Р	L2
1.2660	22.51	10.22	32.73	73.00	-40.27	Р	L2
3.7050	20.97	10.34	31.31	73.00	-41.69	Р	L2
18.6720	18.96	10.68	29.64	73.00	-43.36	Р	L2

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

7.2. RADIATED EMISSION MEASUREMENT

7.2.1. LIMITS

Below 1GHz

	Measured on a test site					
FREQUENCY (MHz)	Group 1, class A ≤ 20kV	Group 1, class A > 20kV	Group 1, class B			
(11112)	Quasi-peak (dBuV/m)	Quasi-peak (dBuV/m)	Quasi-peak (dBuV/m)			
0.15 - 30	Under consideration	Under consideration	Under consideration			
30 - 230	40	50	30			
230 - 1000	47	57	37			

Note: The lower limit shall apply at the transition frequencies.

Above 1GHz

	Class A (dBu	V/m) (At 3m)	Class B (dBuV/m) (At 3m)		
Frequency (MHz)	Average	Peak	Average	Peak	
1000 ~ 3000	56	76	50	70	
3000 ~ 6000	60	80	54	74	

Note: The lower limit shall apply at the transition frequencies.

According to EN 55032: 2015 + A11: 2020 / BS EN 55032: 2015 + A11: 2020 Table 1 the measurement frequency range shown in the following table:

Table 1 – Required	highest frequ	encv for radiate	d measurement
	J	,	

Highest internal frequency (<i>Fx</i>)	Highest internal frequency
<i>F</i> _X ≤ 108 MHz	1 GHz
108 MHz < <i>F</i> _X ≤ 500 MHz	2 GHz
500 MHz < $F_X \le$ 1 GHz	5 GHz
<i>F_x</i> > 1 GHz	5 x F_X up to a maximum of 6 GHz
NOTE 1 For FM and TV broadcast receivers, F_X is d	etermined from the highest frequency generated or
used excluding the local oscillator and tuned frequenci	es.
NOTE 2 F_X is defined in 3.1.19.	

Where F_x is unknown, the radiated emission measurements shall be performed up to 6 GHz.

7.2.2. TEST INSTRUMENTS

Open Area Test Site # H						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Bilog Antenna	Teseq	CBL 6112D	40529	09/22/2022		
Cable	EMEC	CFD400E-LW	SD-R074	08/11/2022		
EMI Test Receiver	R&S	ESCI	101340	02/10/2023		
Pre-Amplifier	HP	8447D	1937A01554	09/23/2022		
Thermo-Hygro Meter	Wisewind	201A	No. 03	05/17/2023		
Test S/W		EZ-I	EMC			
	Chamber # E (Above 1GHz Used)					
Horn Antenna	ETS	3117	00139062	07/05/2023		
Microflex Cable x 7m	EMCI	EMC107-NM- NM-7000	SD-R077	07/04/2023		
K-Type Cable x 1m	EMCI	EMC101G-KM- KM-1000	SD-R075	07/04/2023		
Pre-Amplifier	Com-Power	PAM-118A	551041	06/27/2023		
Signal Analyzer	R&S	FSV40	101269	06/23/2023		
Thermo-Hygro Meter	Wisewind	201A	SD-R046	07/31/2023		
Test S/W		EZ-EMC				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

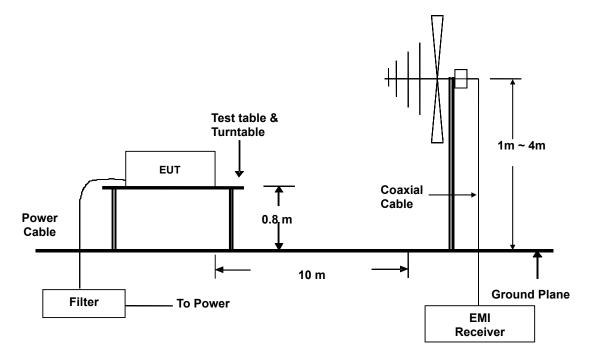
2. N.C.R = No Calibration Request.

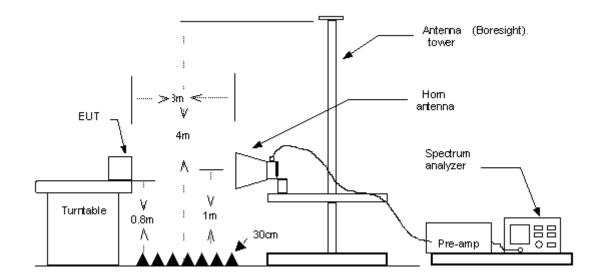
7.2.3. TEST PROCEDURE

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55011 / BS EN 55011.
- All I/O cables were positioned to simulate typical usage as per EN 55011 / BS EN 55011.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in EN 55011 / BS EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 6000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test


- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. Below 1GHz the Q.P. reading and above 1GHz the Peak and Average reading are presented.
- The test data of the worst-case condition(s) was recorded.


Page: 19 / 71 Rev.: 00

7.2.4. TEST SETUP

Below 1GHz

Above 1GHz

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.2.5. DATA SAMPLE

Below 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q)	(H/V)
x.xx	14.0	12.2	26.2	40	-13.8	Q	

Above 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/A)	(H/V)
X.XX	42.95	0.55	43.50	60	-16.50	А	

Freq.	= Emission frequency in MHz
Reading	= Uncorrected Analyzer/Receiver reading
Factor	= Antenna Factor + Cable Loss - Amplifier Gain
Result	= Reading + Factor
Limit	= Limit stated in standard
Margin	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
Н	= Antenna Polarization: Horizontal
V	= Antenna Polarization: Vertical

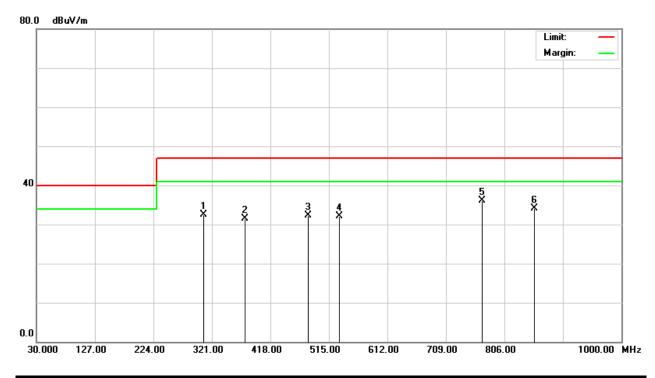
Calculation Formula

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

7.2.6. TEST RESULTS

Below 1GHz

Model No.	odel No. UPS-EHL01; UPS-EDGE-EHL01		Mode 1	
Environmental Conditions	29.6°C, 65% RH	6dB Bandwidth	120 kHz	
Antenna Pole	Vertical	Antenna Distance	10m	
Detector Function	Quasi-peak.	Tested by	Jack Chen	
Standard EN 55011 GROUP 1 CLASS A				



	Radiated Emission Readings									
Frequency Range Investigated 30 MHz to 1000 MHz at 10m										
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)		Margin (dB)	Height (cm)	Degree (°)	Detector (P/Q)	Pol. (H/V)
45.1200	43.40	-10.63	32.77	40.	.00	-7.23	100	310	Q	V
250.6900	42.20	-6.95	35.25	47.	.00	-11.75	100	277	Q	V
480.3800	35.40	-1.21	34.19	47.	.00	-12.81	400	129	Q	V
533.4600	34.20	-0.42	33.78	47.	.00	-13.22	400	32	Q	V
615.7900	33.40	0.96	34.36	47.	.00	-12.64	400	156	Q	V
924.3100	31.60	4.16	35.76	47.	.00	-11.24	400	283	Q	V

Note: 1. P= Peak Reading; Q= Quasi-peak Reading.

	UPS-EHL01; UPS-EDGE-EHL01	Test Mode	Mode 1
Environmental Conditions	29.6°C, 65% RH	6dB Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Jack Chen
Standard	EN 55011 GROUP 1 CLASS A		

	Radiated Emission Readings									
Fr	equency R	ange Inves	tigated	30 MHz to 1000 MHz at 10m						
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)		Margin (dB)	Height (cm)	Degree (°)	Detector (P/Q)	Pol. (H/V)
307.5400	38.30	-5.77	32.53	47.	.00	-14.47	400	112	Q	Н
375.6300	35.40	-3.98	31.42	47.	.00	-15.58	400	276	Q	Н
480.3900	33.50	-1.21	32.29	47.	.00	-14.71	100	158	Q	Н
531.8200	32.60	-0.54	32.06	47.	.00	-14.94	100	213	Q	Н
769.4800	33.40	2.66	36.06	47.	.00	-10.94	100	346	Q	Н
856.2300	30.30	3.73	34.03	47.	00	-12.97	100	15	Q	Н

Note: 1. P= Peak Reading; Q= Quasi-peak Reading.

Above 1GHz

Model No.	el No. UPS-EHL01; UPS-EDGE-EHL01 T		Mode 1	
Environmental Conditions	21.9ºC, 57% RH	6dB Bandwidth	1 MHz	
Antenna Pole	Vertical / Horizontal	orizontal Antenna Distance		
Highest frequency generated or used	2000MHz	Upper frequency	6000MHz	
Detector Function	Peak and average. Tested by		Jack Chen	
Standard Above 1GHz test is Applicable EN 55032 standard.				

Radiated Emission Readings									
Frequ	uency Rang		Above 1GH	Iz at 3m					
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/A)	Pol. (H/V)		
1050.000	54.54	-8.67	45.87	76.00	-30.13	Р	V		
1690.000	51.53	-7.08	44.45	76.00	-31.55	Р	V		
1845.000	47.51	-5.21	42.30	76.00	-33.70	Р	V		
2225.000	47.56	-4.65	42.91	76.00	-33.09	Р	V		
2520.000	48.74	-4.04	44.70	76.00	-31.30	Р	V		
3000.000	47.97	-3.80	44.17	76.00	-31.83	Р	V		

	Radiated Emission Readings									
Freq	uency Rang		Above 1GH	lz at 3m						
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (P/A)	Pol. (H/V)			
1050.000	52.05	-8.67	43.38	76.00	-32.62	Р	Н			
1685.000	54.36	-7.11	47.25	76.00	-28.75	Р	Н			
1845.000	49.07	-5.21	43.86	76.00	-32.14	Р	Н			
2155.000	48.01	-5.24	42.77	76.00	-33.23	Р	Н			
2495.000	50.17	-4.03	46.14	76.00	-29.86	Р	Н			
3000.000	46.56	-3.80	42.76	76.00	-33.24	Р	Н			

Note: 1. P= Peak Reading; A= Average Reading.

7.3. HARMONICS CURRENT MEASUREMENT

7.3.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for	Class A equipment		Limits for Class D equip	oment
Harmonics Order n	Max. permissible harmonics current A	Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A
Od	ld harmonics		Odd Harmonics only	1
3	2.30	3	3.4	2.30
5	1.14	5	1.9	1.14
7	0.77	7	1.0	0.77
9	0.40	9	0.5	0.40
11	0.33	11	0.35	0.33
13	0.21	13	0.30	0.21
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n
Eve	en harmonics			
2	1.08			
4	0.43			
6	0.30			
8<=n<=40	0.23x8/n			

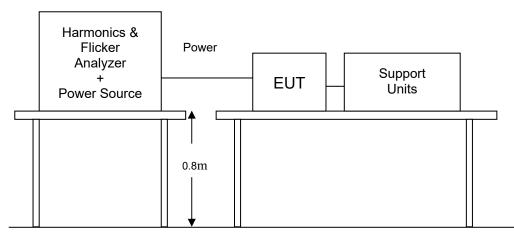
NOTE: 1. Class A and Class D are classified according to item 7.3.3.

2. According to section 7 of EN IEC 61000-3-2 / BS EN IEC 61000-3-2 the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

7.3.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
5kVA Power Source	Teseq	NSG 1007-5	1537A01296	03/10/2023	
Signal Conditioning Unit	Teseq	NSG 1000-1	1846A01831	03/10/2023	
Software	Software WIN2100V4 Ver. 4.22				

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


Page: 25 / 71 Rev.: 00

Report No.: TMXD2207003482DE

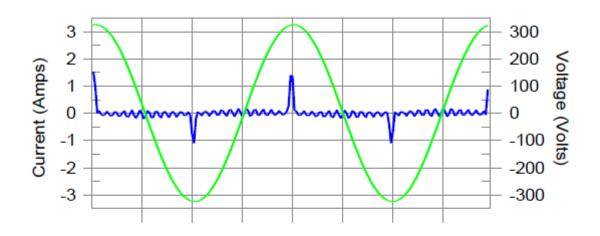
7.3.3. TEST PROCEDURE

- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- The classification of EUT is according to section 5 of EN IEC 61000-3-2 / BS EN IEC 61000-3-2.
- The EUT is classified as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B: Portable tools; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors; television receivers and refrigerators and freezers having one or more variable-speed drives to control compressor motor(s).
- The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

7.3.4. TEST SETUP

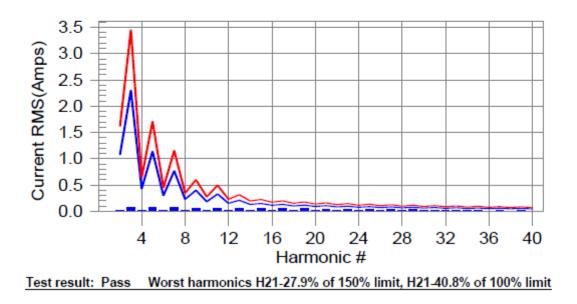
• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.3.5. TEST RESULTS


Power Consumption	16.0W	Test Results	PASS
Environmental Conditions	21.2°C, 60% RH, 1010mbar	Limits	Class 🛛 A 🗆 B 🗆 C 🗆 D
Test Mode	Operating	Tested by	Jack Chen

NOTE: Limits classified according to item 7.3.1.

Test result of EN IEC 61000-3-2


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Page: 27 / 71 Rev.: 00

Test Result: Pass Source qualification: Normal THC(A): 0.208 I-THD(%): 277.2 POHC(A): 0.091 POHC Limit(A): 0.251							
-	t parameter va V RMS (Volts I Peak (Amp I Fund (Amp Power (Watts	s): 229.81 s): 1.641 s): 0.075	test:	Frequency(Hz) I RMS (Amps) Crest Factor: Power Factor:	: 50.00 : 0.247 6.968 0.294		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 90 21 22 32 4 26 27 8 90 31 32 33 34	0.013 0.068 0.014 0.066 0.014 0.065 0.014 0.063 0.014 0.060 0.014 0.055 0.014 0.055 0.014 0.055 0.014 0.055 0.014 0.051 0.014 0.051 0.014 0.051 0.014 0.047 0.014 0.047 0.014 0.047 0.013 0.013 0.036 0.013 0.032 0.012 0.025 0.010 0.025 0.012 0.025 0.010 0.025 0.014 0.051 0.014 0.051 0.014 0.026 0.014 0.051 0.014 0.051 0.014 0.051 0.014 0.051 0.012 0.020 0.022 0.022 0.025 0.012 0.025 0.010 0.025 0.012 0.025 0.010 0.025 0.012 0.025 0.010 0.025 0.012 0.025 0.010 0.025 0.012 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.025 0.010 0.021 0.025 0.0010 0.021 0.0021 0.0021 0.009 0.021	1.080 2.300 0.430 1.140 0.300 0.770 0.230 0.400 0.184 0.330 0.153 0.210 0.131 0.150 0.115 0.132 0.102 0.115 0.132 0.102 0.118 0.092 0.107 0.084 0.098 0.077 0.090 0.071 0.083 0.066 0.073 0.058 0.068 0.054	1.2 2.9 3.2 5.8 4.6 8.4 6.1 15.7 7.7 18.3 9.4 27.5 11.0 36.3 12.6 38.7 14.1 40.1 15.4 40.8 16.6 40.8 17.4 39.9 18.0 38.4 18.3 36.4 18.3 33.8 18.0 30.8 17.2	0.015 0.069 0.015 0.068 0.015 0.067 0.015 0.065 0.016 0.059 0.016 0.059 0.016 0.059 0.016 0.059 0.016 0.059 0.015 0.049 0.015 0.049 0.015 0.049 0.015 0.049 0.015 0.049 0.015 0.041 0.041 0.033 0.013 0.029 0.012 0.025 0.011 0.022 0.011	$\begin{array}{c} 1.620\\ 3.450\\ 0.645\\ 1.710\\ 0.450\\ 1.155\\ 0.345\\ 0.600\\ 0.276\\ 0.495\\ 0.230\\ 0.315\\ 0.197\\ 0.225\\ 0.173\\ 0.198\\ 0.153\\ 0.178\\ 0.153\\ 0.178\\ 0.138\\ 0.161\\ 0.125\\ 0.147\\ 0.115\\ 0.135\\ 0.107\\ 0.125\\ 0.099\\ 0.116\\ 0.092\\ 0.090\\ 0.109\\ 0.086\\ 0.102\\ 0.081\\ \end{array}$	0.9 2.0 2.4 4.0 3.4 5.8 4.5 10.8 5.6 12.5 6.8 18.8 8.0 24.9 9.0 26.5 10.1 27.4 11.1 27.9 12.5 27.3 12.9 26.3 13.3 24.9 13.3 24.9 13.3 24.9 13.3 24.9 13.3 24.9 26.3 13.3 24.9 13.3 24.9 26.3 13.3 24.9 26.3 13.2 21.1 12.6	Pass Pass Pass Pass Pass Pass Pass Pass
35 36 37 38 39 40	0.018 0.008 0.015 0.007 0.012 0.006	0.064 0.051 0.061 0.048 0.058 0.046	27.5 16.2 24.1 14.9 20.6 13.3	0.018 0.009 0.015 0.008 0.012 0.007	0.096 0.077 0.091 0.073 0.087 0.069	18.8 12.0 16.5 11.1 14.0 9.9	Pass Pass Pass Pass Pass Pass

Page: 28 / 71 Rev.: 00

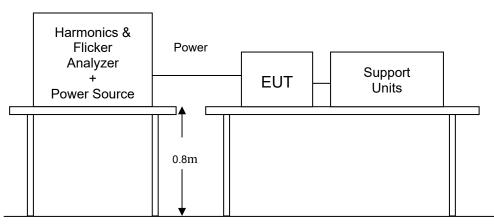
Test Result: Pass Source qualification: Normal					
¯ Vol IP I⊺F	rameter values during t tage (Vrms): 229.81 eak (Amps): 1.641 und (Amps): 0.075 wer (Watts): 16.0	Freq I RM Cres	uency(Hz): 50.00 IS (Amps): 0.247 st Factor: 6.968 er Factor: 0.294	3	
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 37 37 37 37 37 37 37 37 37 37	0.043 0.288 0.020 0.091 0.029 0.021 0.008 0.037 0.013 0.029 0.018 0.035 0.010 0.027 0.010 0.027 0.010 0.036 0.021 0.039 0.030 0.040 0.015 0.040 0.015 0.040 0.016 0.036 0.014 0.036 0.015 0.031 0.015 0.030 0.015 0.030 0.014 0.027 0.013 0.024	0.460 2.068 0.459 0.919 0.460 0.689 0.460 0.460 0.230 0	9.35 13.95 4.31 9.86 6.21 3.04 1.70 8.04 2.90 12.65 7.76 15.41 4.44 11.73 4.51 15.59 8.95 16.83 13.07 17.54 6.60 17.23 7.04 15.82 6.18 13.12 6.85 15.70 6.41 13.48 6.61 12.95 6.12 11.75 5.77 10.65	OKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	
38 39 40	0.013 0.022 0.021	0.230 0.230 0.230	5.74 9.61 9.24	OK OK OK	

7.4. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

7.4.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

TEST ITEM	LIMIT	REMARK	
Pst	1.0	P _{st} means short-term flicker indicator.	
P _{lt}	0.65	P _{lt} means long-term flicker indicator.	
T _{dt} (ms)	500	T_{dt} means maximum time that dt exceeds 3 %.	
d _{max} (%)	4%	d _{max} means maximum relative voltage change.	
dc (%)	3.3%	dc means relative steady-state voltage change	

7.4.2. TEST INSTRUMENTS


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
5kVA Power Source	Teseq	NSG 1007-5	1537A01296	03/10/2023
Signal Conditioning Unit	Teseq	NSG 1000-1	1846A01831	03/10/2023
Software	WIN2100V4 Ver. 4.22			

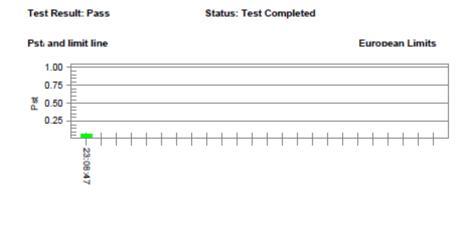
NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

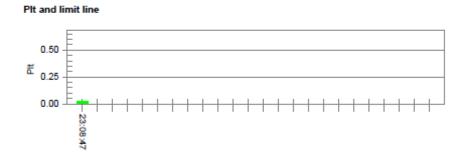
7.4.3. TEST PROCEDURE

- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.4.4. TEST SETUP

• For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.


7.4.5. TEST RESULTS


Observation Period (Tp)	10mins	Test Mode	Operating
Environmental Conditions	21.2°C, 60% RH, 1010mbar	Tested by	Jack Chen

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
Pst	0.064	1.0	PASS
Pıt	0.028	0.65	PASS
T _{dt} (ms)	0	500	PASS
d _{max} (%)	0.00	4%	PASS
dc (%)	0.00	3.3%	PASS

NOTE: None.

Test result of EN 61000-3-3

Parameter values recorded du	ring the test:			
Vrms at the end of test (Volt):	229.67			
Highest dt (%):		Test limit (%):		
T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.028	Test limit:	0.650	Pass

8 IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Product Standard	EN IEC 61000-6-1: 2019 / BS EN IEC 61000-6-1: 2019		
Product Standard	Test Type	Minimum Requirement	
Basic Standard, Specification, and Performance Criterion required	IEC 61000-4-2	Electrostatic Discharge – ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B	
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS: 80 ~1000 MHz, 3V/m, 80% AM (1kHz) 1400 ~ 6000 MHz, 3V/m, 80% AM (1kHz) Performance Criterion A	
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power Port: 1kV DC Power Port: 0.5kV Signal Port: 0.5kV Performance Criterion B	
	IEC 61000-4-5	Surge Immunity Test: 1.2/50 µs Open Circuit Voltage, 8 /20 µs Short Circuit Current, AC Power Port ~ line to line: 1kV, line to earth: 2kV DC Power Port ~ line to line: 0.5kV, line to earth: 1kV Signal port ~ line to earth: 1kV Performance Criterion B	
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test – CS: AC Power Port, DC Power Port, Signal Port: 0.15~80MHz, 3Vrms, 80% AM, 1kHz Performance Criterion A	
	IEC 61000-4-8	Power frequency magnetic field immunity test 50/60Hz, 3A/m Performance Criterion A	
	IEC 61000-4-11	 Voltage Dips: i) 0% residual for 0.5 Cycle at 50Hz 0% residual for 1 Cycle at 50Hz Performance Criterion B ii) 70% residual for 25/30 Cycles at 50/60Hz Performance Criterion C Voltage Interruptions: 0% residual for 250/300 Cycles at 50/60Hz Performance Criterion C 	

Page: 32 / 71 Rev.: 00

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.
Criteria B:	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

Page: 33 / 71 Rev.: 00

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard:	IEC 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Discharge Voltage:	Air Discharge: 2 ; 4 ; 8 kV (Direct) Contact Discharge: 2 ; 4 kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Minimum 10 times at each test point
Discharge Mode:	Single Discharge 1 second minimum

8.3.2. TEST INSTRUMENT

IMMUNITY SHIELDED ROOM					
Name of Equipment Manufacturer Model Serial Number Calibration Due					
Aneroid Barometer	SATO	7610-20	89090	08/03/2023	
ESD Simulator	Teseq	NSG 438	1581	07/07/2023	
Thermo-Hygro Meter	Wisewind	201A	SD-S041	01/04/2023	

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

Page: 34 / 71 Rev.: 00

Report No.: TMXD2207003482DE

8.3.3. TEST PROCEDURE

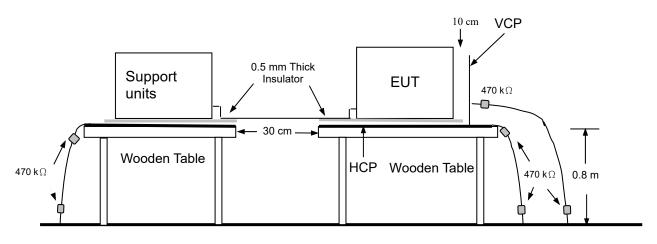
The discharges shall be applied in two ways:

a) Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 20 discharges, 10 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 10 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 10 direct contact discharges. If no direct contact test points are available, then at least 20 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b) Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.


The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

Page: 35 / 71 Rev.: 00

8.3.4. TEST SETUP

Ground Reference Plane

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k ohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.5. TEST RESULTS

Temperature	18.3ºC	Humidity	45% RH	
Pressure	1008mbar	Tested By	Jack Chen	
Required Pa	ssing Performance	Criterion B		

Air Discharge							
	Test Levels			Results			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion	Observation
Front						□A □B	Note □ 1 ⊠ 2 □ 3
Back						□A □B	Note □ 1 ⊠ 2 □ 3
Left						□A □B	Note □ 1 ⊠ 2 □ 3
Right						□A □B	Note
Тор						□A □B	Note □ 1 ⊠ 2 □ 3
Bottom						A B	Note □1 ⊠2 □ 3

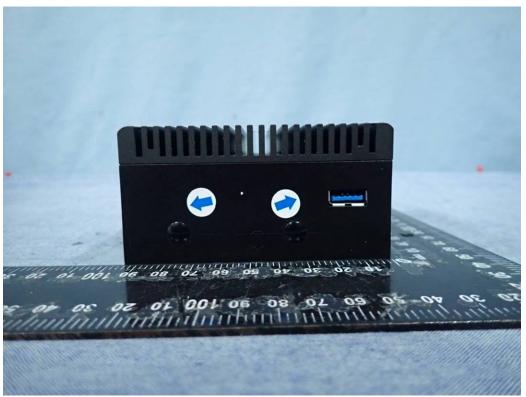
Contact Discharge							
	Test Levels			Results			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion	Observation
Front	\square	\square		\square		A B	Note ⊠1
Back	\square	\square		\boxtimes		□A ⊠B	Note □ 1 □ 2 ⊠ 3
Left	\boxtimes	\square		\boxtimes		⊠A □B	Note ⊠1 □ 2 □ 3
Right	\boxtimes	\square		\boxtimes		⊠A ⊡B	Note ⊠1
Тор	\square	\square		\boxtimes		A B	Note ⊠1
Bottom	\square	\square		\square			Note 🛛 1 🗌 2 🔲 3

Discharge To Horizontal Coupling Plane								
Test Levels					Results			
Side of EUT	± 2 kV ± 4 kV ± 8 kV Pass Fail F				Performance Criterion Observation			
Front	\square	\square		\boxtimes		A B	Note ⊠1	
Back	\boxtimes	\boxtimes		\boxtimes		🛛 A 🗌 B	Note 🛛 1 🗌 2 🔲 3	
Left						A B	Note 🛛 1 🗌 2 🔲 3	
Right						A B	Note 🛛 1 🗌 2 🔲 3	

Discharge To Vertical Coupling Plane								
Test Levels Results								
Side of EUT	± 2 kV ± 4 kV ± 8 kV		Pass	Fail	Performance Criterion	Observation		
Front	\square	\square		\square		A B	Note ⊠1	
Back	\square	\square		\square		A B	Note ⊠1	
Left	\square	\square		\square		A B	Note 🛛 1 🗌 2 🔲 3	
Right	\square	\square		\square		A B	Note 🛛 1 🗌 2 🔲 3	

NOTE: 1. There was no change compared with initial operation during the test.

2. Not applicable (Metal Case).

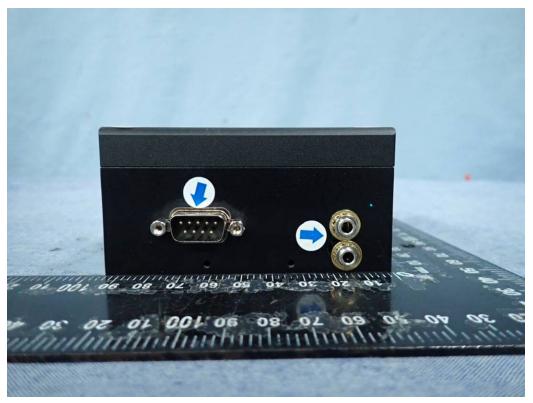

3. During the ±4kV contact discharge applied to EUT 's back side, there were generated flickers on the display, the data transmitting was paused, but could recover automatically afterwards.

Page: 37 / 71 Rev.: 00

The Photo for Discharge Points of EUT

Front

Back


Red Dot —Air Discharged Blue Dot —Contact Discharged

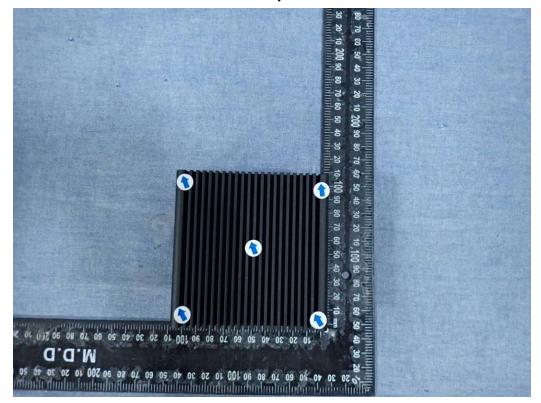
This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。



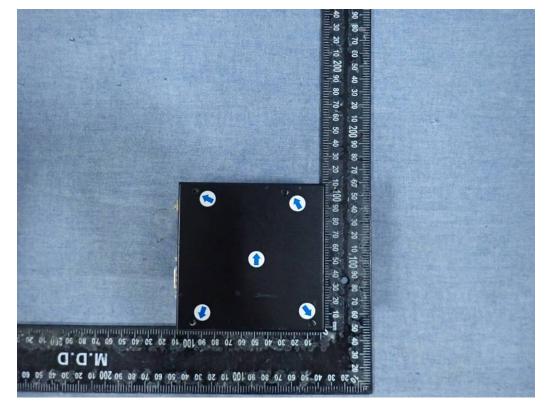
Page:	38 / 71
Rev.:	00

Left

Right



Red Dot —Air Discharged Blue Dot —Contact Discharged



Page: 39 / 71 Rev.: 00

Тор

Bottom

Red Dot —Air Discharged Blue Dot —Contact Discharged

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 40 / 71 Rev.: 00

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

8.4.1. TEST SPECIFICATION

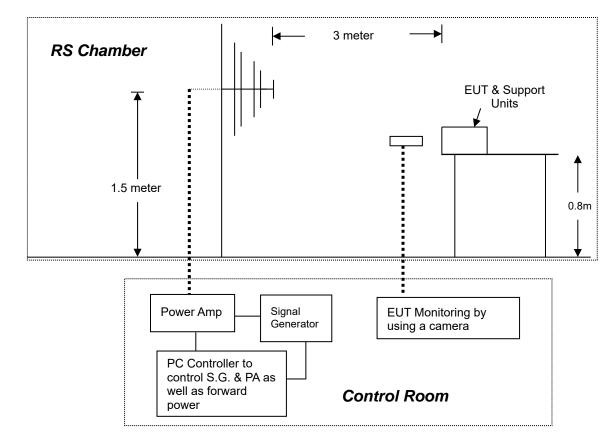
Basic Standard:	IEC 61000-4-3
Frequency Range:	80 MHz ~ 1000 MHz, 1400 MHz ~ 6000 MHz
Field Strength:	3V/m, 3V/m
Modulation:	1kHz sine Wave, 80%, AM Modulation.
Frequency Step:	1 % of preceding frequency value
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5m

8.4.2. TEST INSTRUMENT

844 RS Chamber					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Electric Field Probe	AR	FL7006	0356656	10/15/2022	
Field of Calibration	CCS	Chamber#RS	80-1000MHz	02/24/2023	
RF Power Meter	Boonton	4242	17419	03/06/2023	
Power Sensor	Boonton	51011A-EMC	36833	03/06/2023	
Power Sensor	Boonton	51011A-EMC	36834	03/06/2023	
Thermo-Hygro Meter	Wisewind	N/A	SD-S019	10/04/2022	
Broadband Antenna	Schwarzbeck	VUSLP 9111E	D-69250	N.C.R	
Power Amplifier	Milmega	80RF1000-600	1079361	N.C.R	
Signal Generator	Agilent	N5181A	MY47421336	09/13/2022	
Field of Calibration	CCS	Chamber#RS	1000-6000M	02/22/2023	
Direction Coupler	AR	DC7144A	306217	N.C.R	
Microwave Antenna	Schwarzbeck	STLP 9149	767	N.C.R	
Power Amplifier	AR	60S1G3	302728	N.C.R	
Power Amplifier	Milmega	AS1860-100	1075832	N.C.R	
Power Amplifier	Teseq	CBA6G-100D	1087370	N.C.R	
Software	EmcwareVer. 2.6.0.16				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required.


Page: 41 / 71 Rev.: 00

Report No.: TMXD2207003482DE

8.4.3. TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz ~ 1000 MHz, 1400 MHz ~ 6000 MHz with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. TEST SETUP

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

8.4.5. TEST RESULTS

Temperature	22.4°C	Humidity	55% RH
Pressure	1005mbar	Dwell Time	3 sec.
Tested By	Jack Chen	Required Passing Performance	Criterion A

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performa Criterio		Observation	Result
80-1000	V&H	0	3	A	□В	Note ⊠1	PASS
80-1000	V&H	90	3	A	В	Note ⊠1 □2	PASS
80-1000	V&H	180	3	A	В	Note ⊠1 □2	PASS
80-1000	V&H	270	3	A	В	Note ⊠1 □2	PASS
1400 ~ 6000	V&H	0	3	A	□в	Note ⊠1 □2	PASS
1400 ~ 6000	V&H	90	3	A	В	Note ⊠1 □2	PASS
1400 ~ 6000	V&H	180	3	A	В	Note ⊠1	PASS
1400 ~ 6000	V&H	270	3	A	В	Note ⊠1	PASS

NOTE: 1. There was no change compared with the initial operation during the test.

Page: 43 / 71

00

Rev.:

Report No.: TMXD2207003482DE

8.5. ELECTRICAL FAST TRANSIENT (EFT)

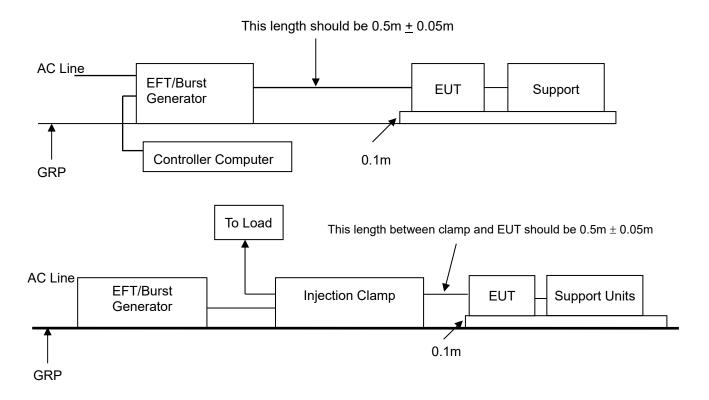
8.5.1. TEST SPECIFICATION

Basic Standard:	IEC 61000-4-4
Test Voltage:	AC Power Port: 1kV Signal Port: 0.5kV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave-shape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 1 min.

8.5.2. TEST INSTRUMENT

Immunity Shield Room					
Name of Equipment	Manufacturer Model Serial Number Calibration Due				
Capacitive Clamp	EMC-Partner	CN-EFT1000	589	03/29/2023	
EMC Immunity Tester	EMC Partner TRANSINT 2000 1117 02/22/2023				
Software	GenecsVer. 3.27				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R.= No Calibration required.

8.5.3. TEST PROCEDURE

- a) All types of cables, including their length, and the interface port of the EUT to which they were connected.
- b) Both positive and negative polarity discharges were applied.
- c) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter.
- d) The duration time of each test sequential was 1 minute.
- e) The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

8.5.4. TEST SETUP

• For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

8.5.5. TEST RESULTS

Temperature	23.5°C	Humidity	56% RH
Pressure	1008mbar	Tested By	Jack Chen
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L	+/-	1		Note ⊠1	PASS
N	+/-	1	⊠A □B	Note ⊠1	PASS
L - N	+/-	1	⊠A □B	Note ⊠1	PASS
RJ45	+/-	0.5	⊠A □B	Note ⊠1	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard:	IEC 61000-4-5	
Wave-Shape:	Combination Wave 1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current	
Test Voltage:	AC Power Port ~ line to line: 1kV Signal port ~ line to earth: 1kV	
Surge Input/Output:	Power Line: L-N Signal Line: L-G	
Generator Source Impedance:	2 ohm between networks 42 ohm between network and ground	
Polarity:	Positive/Negative	
Phase Angle:	0° / 90° / 180° / 270°	
Pulse Repetition Rate:	1 time / min. (maximum)	
Number of Tests:	5 positive and 5 negative at selected points	

8.6.2. TEST INSTRUMENT

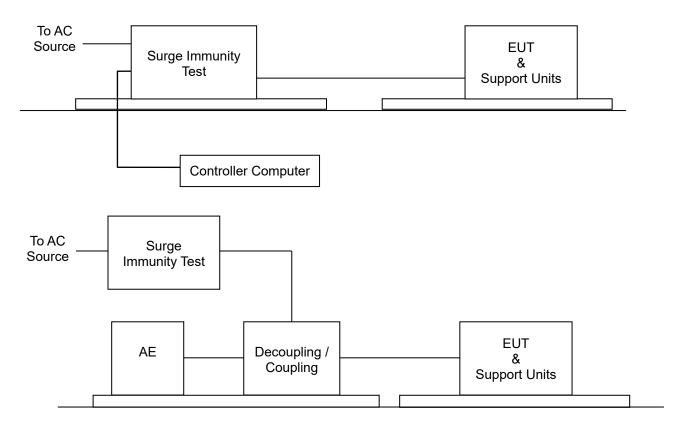
Immunity Shield Room					
Name of Equipment	Manufacturer Model Serial Number Calibration Due				
CDN	EMC-Partner	CDN-UTP8	1502	02/23/2023	
EMC Immunity Tester	EMC Partner TRANSINT 2000 1117 02/22/2023				
Software	GenecsVer. 3.27				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required.

Page: 47 / 71 Rev.: 00

Report No.: TMXD2207003482DE


8.6.3. TEST PROCEDURE

a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT: The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.6.5. TEST RESULTS

Temperature	23.5°C	Humidity	56% RH
Pressure	1008mbar	Tested By	Jack Chen
Required Passing Performance		С	riterion B

Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L - N	+/-	1	⊠A □B	Note ⊠1	PASS
RJ45	+/-	1	□A ⊠B	Note 🗌 1 🖂 2	PASS

NOTE: 1. There was no change compared with initial operation during the test.

2. During the test, data accessing via LAN port was paused. It could become normal after test stopped.

Page: 49 / 71 Rev.: 00

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

8.7.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-6

Frequency Range: 0.15 MHz - 80 MHz

Field Strength: 3 Vrms

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Coupled cable: Power Mains, Unshielded; RJ45 Line, Unshielded

Coupling device: CDN-M2 (2 wires); CDN-T8

8.7.2. TEST INSTRUMENT

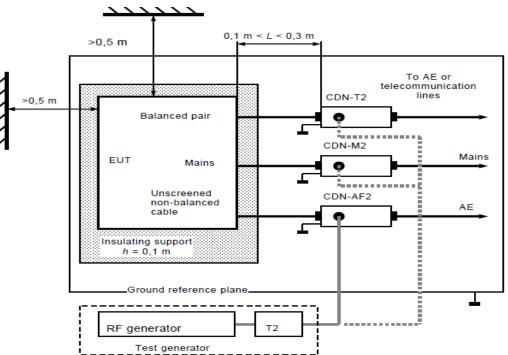
CS Room						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
CDN	Teseq	CDN S751A	46649	11/02/2022		
CDN	Teseq	CDN M016	35821	11/02/2022		
CDN	TESEQ	CDN T400A	28547	11/02/2022		
CDN	FCC	FCC-801-M3-25A	9973	11/02/2022		
CDN	Teseq	CDN T8A-10	57182	05/30/2023		
Compact Immunity Test System	TESEQ	NSG 4070B-35	39581	11/03/2022		
Software		NSG 4070 Control Program V1.2.0				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required.

Page: 50 / 71 Rev.: 00

8.7.3. TEST PROCEDURE


The EUT shall be tested within its intended operating and climatic conditions.

The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

Note: 1. The CDNs and / or EM clamp used for real test depends on ports and cables configuration of EUT. 2. The EUT clearance from any metallic obstacles shall be at least 0.5m

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Page: 51 / 71 Rev.: 00

Report No.: TMXD2207003482DE

NOTE:

TABLE-TOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.5. TEST RESULTS

Temperature	21.2ºC	Humidity	60% RH
Pressure	1010mbar	Dwell Time	3 sec.
Tested By	Jack Chen	Required Passing Performance	Criterion A

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method	Performance Criterion		Observa	tion	Result
0.15 ~ 80	3	AC Power Line (0.3m)	CDN-M2	A	□в	Note 🖂1	2	PASS
0.15 ~ 80	3	RJ45 Line (0.3m)	CDN-T8	A	□в	Note 🖂1	2	PASS

NOTE: 1. There was no change compared with initial operation during the test.

Page: 52 / 71 Rev.: 00

Report No.: TMXD2207003482DE

8.8. POWER FREQUENCY MAGNETIC FIELD

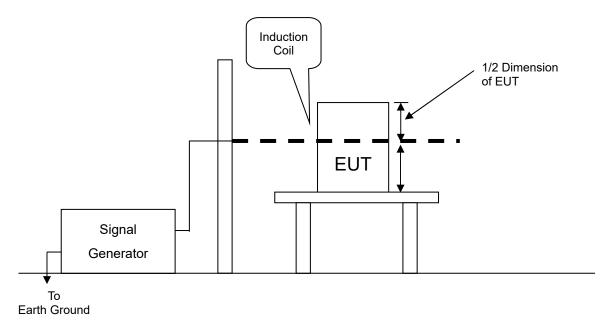
8.8.1. TEST SPECIFICATION

Basic Standard:	IEC 61000-4-8
Frequency Range:	50Hz / 60Hz
Field Strength:	3A/m
Observation Time:	1 minute
Inductance Coil:	Rectangular type, 1mx1m

8.8.2. TEST INSTRUMENT

Immunity Shield Room						
Name of Equipment	Manufacturer Model Serial Number Calibratio					
5kVA Power Source	Teseq	5001IX-208-SCH	1207A03643	09/28/2022		
AC/DC Clamp Meter	Fluke	353	33360025	06/27/2023		
Magnetic Field Coil	Teseq	INA 703 W/ 2141	1976 / 1413	02/22/2023		
Magnetic Field Meter	Sypris	4080	0247	11/03/2022		
Software	Win2120 Ver. 5.0					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R.= No Calibration required.

8.8.3. TEST PROCEDURE

- a. The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

8.8.4. TEST SETUP

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

8.8.5. TEST RESULTS

Required Passing Performance		C	riterion A
Pressure	1005mbar	Tested By	Jack Chen
Temperature	22.6°C	Humidity	56% RH

Direction	Field Strength (A/m)	Performance Criterion	Observation	Results
Х	3	А	Note	PASS
Y	3	А	Note	PASS
Z	3	А	Note	PASS

NOTE: There was no change compared with the initial operation during the test.

Page: 54 / 71 Rev.: 00

8.9. VOLTAGE DIP & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

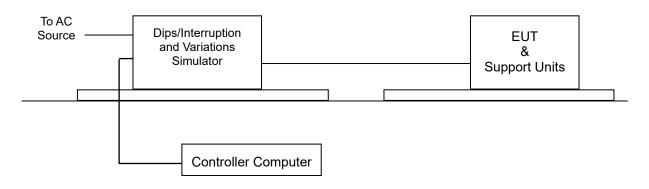
Basic Standard:	IEC 61000-4-11
Test duration time:	Minimum three test events in sequence
Interval between event:	Minimum 10 seconds
Phase Angle:	0° / 180°
Test cycle:	3 times

8.9.2. TEST INSTRUMENT

Immunity shielded room						
Name of Equipment	Manufacturer Model Serial Number Calibration Due					
AC/DC Clamp Meter	Lutron CM-9930R I.200121 04/17/2023					
EMC Immunity Tester	EMC Partner TRANSINT 2000 1117 02/22/2023					
Software	GenecsVer. 3.27					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required.


8.9.3. TEST PROCEDURE

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 4. Recording the test result in test record form.

Page: 55 / 71 Rev.: 00

8.9.4. TEST SETUP

• For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

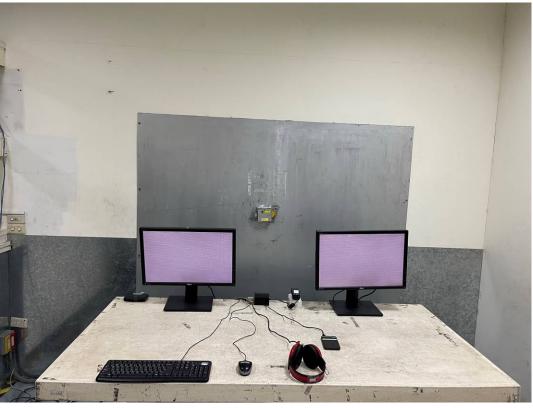
8.9.5. TEST RESULTS

Temperature	23.5°C	Humidity	56% RH
Pressure	1008mbar	Tested By	Jack Chen
Required Passing	Criterion B: i) 0% residual 0. 0% residual 1 Criterion C: ii) 70% residual iii) 0% residual f	Cycle at 50Hz 25/30 Cycles at	: 50/60Hz

Test Power: 230Vac, 50Hz					
Voltage (% Residual)	Duration (Cycle)	Performance Criterion	Observation	Test Result	
0	0.5	A B C	Note ⊠1	PASS	
0	1	A B C	Note ⊠1	PASS	
70	25	A B C	Note ⊠1	PASS	
0	250		Note	PASS	

Test Power: 230Vac, 60Hz					
Voltage (% Residual)	Duration (Cycle)	Performance Criterion		Observation	Test Result
70	30	A	□В □С	Note ⊠1	PASS
0	300	A	□В ⊠С	Note □ 1 ⊠ 2	PASS

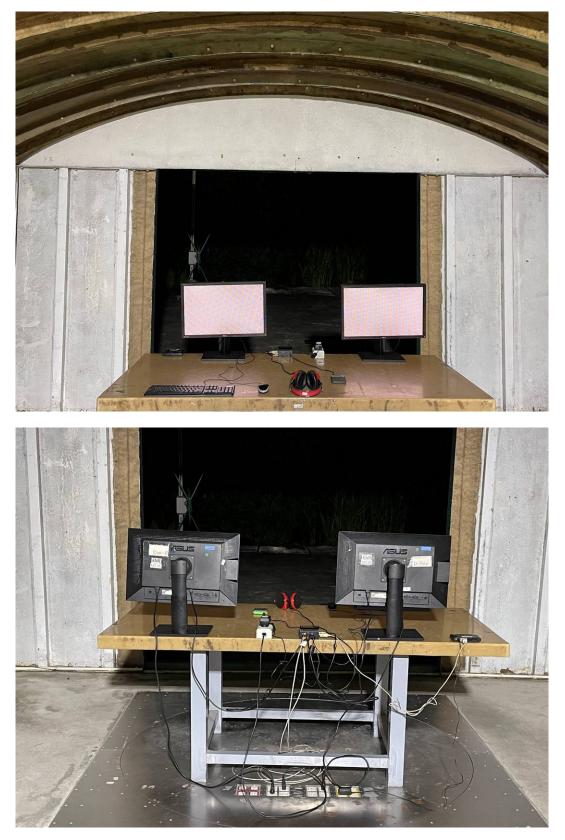
NOTE: 1. There was no change compared with initial operation during and after the test. No unintentional response was found during the test.


2. EUT shut down, it could not become normal except reinstalled by operator.

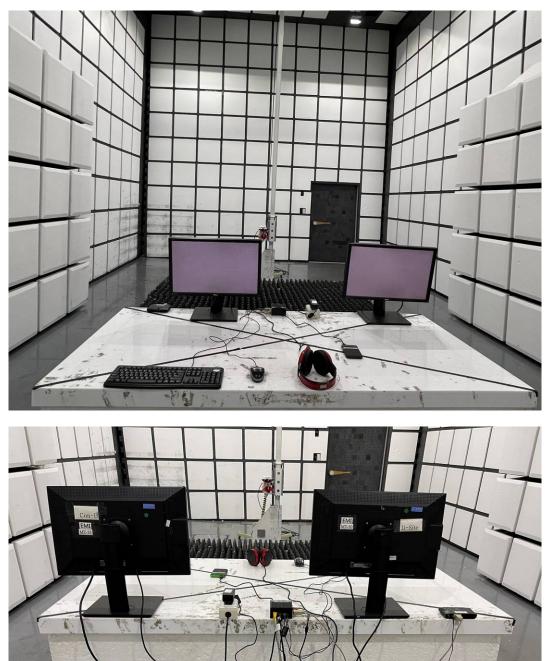
Page: 56 / 71 Rev.: 00

9 PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

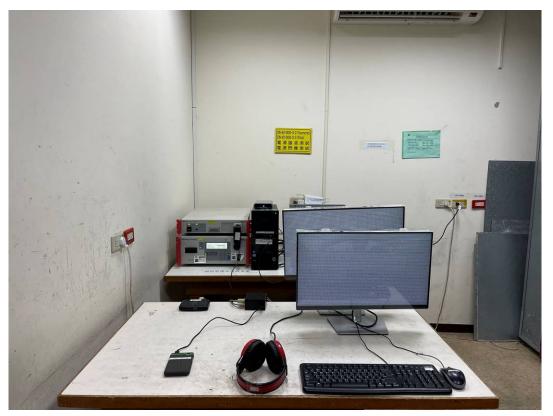


This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。


Page: 57 / 71 Rev.: 00

RADIATED EMISSION TEST (Below 1GHz)

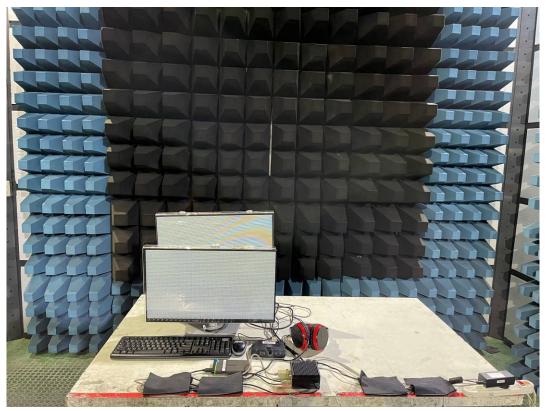
Page: 58 / 71 Rev.: 00


RADIATED EMISSION TEST (Above 1GHz)

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 59 / 71 Rev.: 00

Harmonic & Flicker Test


ESD Test

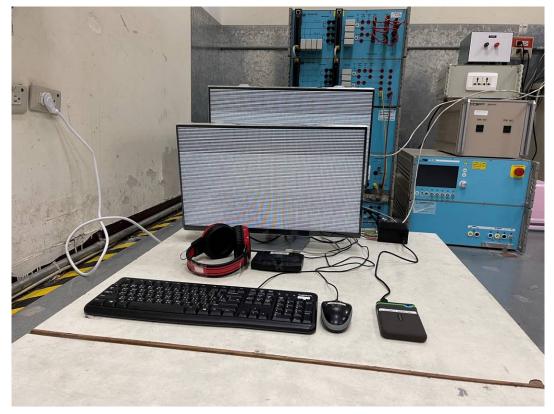
Page: 60 / 71 Rev.: 00

RS Test

EFT Test

Page: 61 / 71 Rev.: 00

EFT For RJ45 Test


Surge Test

Page: 62 / 71 Rev.: 00

Surge For RJ45 Test

CS Test

Page: 63 / 71 Rev.: 00

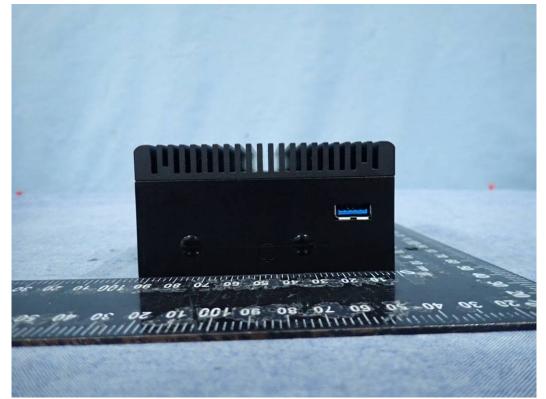
CS For RJ45 Test

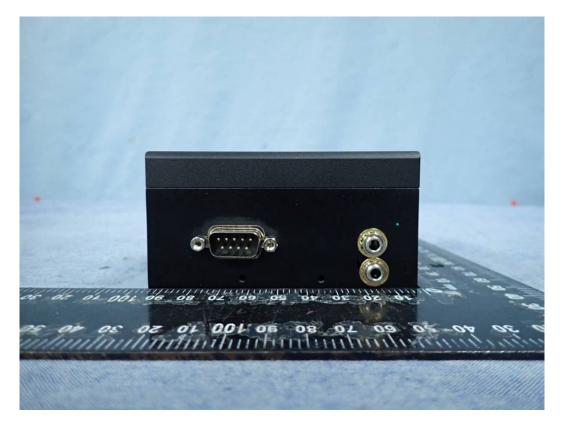

PFMF Test

Page: 64 / 71 Rev.: 00

Voltage Dips / Interruptions Test

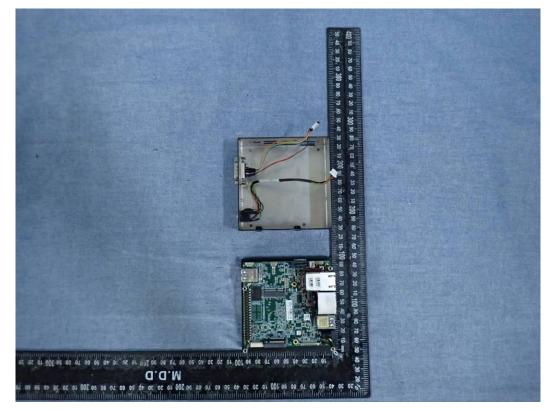
Page: 65 / 71 Rev.: 00


APPENDIX 1 - PHOTOGRAPHS OF EUT



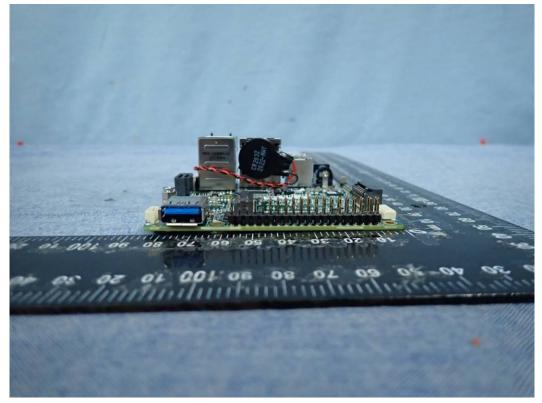
Report No.: TMXD2207003482DE

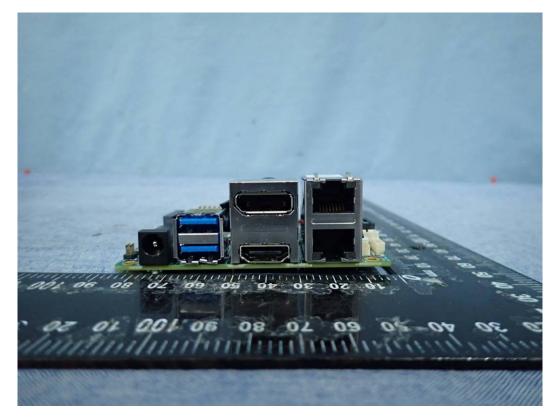
Page: 66 / 71 Rev.: 00



Report No.: TMXD2207003482DE

Page: 67 / 71 Rev.: 00


Page: 68 / 71 Rev.: 00


0.00.0000 1.0.00 m ពុសត្រូណពូលព្រះពុណត្រូវបាន upin minimum 10 50 30 40 20 20 20 80 80 100 10 50 30 40 20 8 30 40 20 60 10 80 a0 100 10 50 30 40 20 60 10 50 30 μ**r** -8 à unu 0L S \$ 50 30 40 70 E0 10 80 80 100 10 50 30 40 20 E0 10 50 30

Report No.: TMXD2207003482DE

Page: 69 / 71 Rev.: 00

Report No.: TMXD2207003482DE

Page: 70 / 71 Rev.: 00

Report No.: TMXD2207003482DE

Page: 71 / 71 Rev.: 00

